

Wind Energy – New Dimensions in Metrology

Thomas Wiedenhöfer, Frank Härtig

Application of wind energy about 1500 BC

sailing vessels in the ancient Egypt

photo: Elvira Kronlob

windmills in China

source: Carl von Canstein

Goals for wind energy systems (WES)

- Core environmental and sustainable objectives
 - reduction of greenhouse gases
 - avoidance of pollution / dangerous waste (coal / nuclear plants)
- Technical and economical objectives
 - competitiveness with conventional energy supply
 - reliability, safety, reasonable maintenance (lifetime 20 years)
- Political objectives
 - secure energy supply (at all weather conditions)
 - development of structured grids
 - reduction of subsidies and infrastructure costs

<u>Germany:</u> renewable energy sources act

2020 35% renewable energy; (today 25%)

Development and forecast of WES sizes

In less than 30 years, the yield from wind turbines has increased more than 500 times

Components of the WES drive train

source: Bosch-Rexroth

Failure frequencies and impacts

source: Fraunhofer IWES, Kassel

Cost distribution caused by WES failures '09 PB

source: Sensen, Gothaer Allgemeine Versicherung AG

Traceability of dimensional and torque measurement

Biggest systems in dimensional metrology:

PTB / NPL / NMIJ, ...: measuring volume < 1m³

<u>problem:</u> no standards > 1m³ available worldwide

Calibration of torque

PTB: 1100 kN·m (biggest system worldwide)

Himmelstein (USA): 450 kN·m

SMERI (China): 200 kN·m (biggest system with direct mass)

LNE (Frankreich): 200 kN·m

problem: systems traceable only up to 1100 kN·m

Competence Centre "Wind Energy"

Calibration for gear measurement today

- measurements in industry
- mover: CMM
- environment: measuring room
- workpiece: calibrated involute gear artefact (reference, validation)

Parameter	Value
Number of teeth z	38
Normal module m_n	20 mm
Pressure angle α_n	20°
Face width b	400 mm
Helix angle	0°/spur; 10°/R; 20°/L
Outside diameter d _a	1000 mm
Weight	450 kg (700 kg)
Reference bands diameter (form deviation)	200 mm (1 μm)

Concept for precise coordinate measurement of big work pieces 1/4

1st step – real measurement

- measure workpieceuse CMM and application software
- register spatial locationsin machine coordinates (x, y, z)
- export of all probing pointsfrom the application program

Cartesian CMM (not Abbe error free)

Concept for precise coordinate measurement of big work pieces 2/4

2nd step – 3D-Abbe measurement

- remove workpiece
- exchange stylus by triple reflector approximately at same centres

Cat-Eye working range 120°

n=2-ball working range 160°

- move to all measurement points measured in step 1
- synchronised read out of all tracking interferometer

3D Abbe error free measurement for measurements on Cartesian CMMs

Concept for precise coordinate measurement of big work pieces 3/4

3rd step – evaluate the local error vector and correct mover points

Concept for precise coordinate measurement of big work pieces 4/4

Calibration of torque 5 MNm to 20 MNm

part under test

Third part of CC-Wind: Wind-Lidar

conventional LIDAR

new – LIDAR calibration system

to be calibrated

Measurement height: 10m - 200m

measuring mast free

MU: 0,1 m/s; spatial resolution: 10⁻⁹ m³

Clues for further development and needs

Total Installed Capacity 2011-2015 [MW]

* Estimated
Total installed capacity: Includes all installed wind capacity, connected and not-connected to the grid.

installierte Leistung [GW]

Thank you for your kind attention

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Bundesallee 100 38116 Braunschweig

Thomas Wiedenhöfer (Wiedenhoefer)

Telefon: +49 (0)531 592-1189

E-Mail: thomas.wiedenhoefer@ptb.de

www.ptb.de